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LINEARIZED UNSTEADY NONEQUILIBRIUM FLOWS OF COMPRESSIBLE GAS

Zh. S. Sislyan

ABSTRACT. Discussion of the field of a disturbed flow pro-
duced by the unsteady motion of a thin foil or of the sur-
face of an infinite circular cylindrical shell situated in

a uniform equilibrium gas flow. Relevant equations are de-
rived and analyzed.

1. We shall survey the field of disturbed flow caused by the unsteady [37%
motion of a thin airfoil located in a uniform and equilibrium stream of gas mov-
ing with velocity U, along the positive x axis in the system of stationary co-
ordinates x, z. Let us suppose that in this field of turbulent flow there takes
place a nonequilibrium process such as, for example, relaxation of the internal
degree of freedom of a molecule or the reaction of dissociation of a diatomic
gas. We shall neglect the effects of viscosity, heat conductivity and diffusi-
vity. On account of the thinness of the airfoil and of the small deviation from
some intermediate position, the disturbances introduced into the stream by the
unsteady motion of the airfoil will be minimal, and the flow will differ little
from the state of thermodynamic equilibrium. As is known [1, 2], a disturbed

flow in this approximatioam is irrotational and the problem is reduced to the
integration of the equatioa
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Here: T, = a parameter which is proportional to the relaxation time 0, (the
subscript ® is used to designate quantities that correspond to the undisturbed

stream); ¢ = turbulent velocity potential; Mf = U”/afm; Me = Um/aem; and ac
and a, = the stagnation and equilibrium velocities of sound, respectively.

(o]

Since ag is always greater than a,s Mf < Me' The boundary condition which dic-

tates the requirement that the stream must move tangentially around the airfoil
contours has the form

" _
_&--_5‘-+l_]“—5? when z = 0 (1.2)

where Z = Z(x,t) is the motion equation of the airfoil. Besides this, the po-

*Numbers in the margin indicate pagination in the foreign text.
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tential ¢ must satisfy the condition that the disturbances are attentuated at
infinity. The expression for the pressure has the form

(1.3)

where p, = the density of the gas in the undisturbed stream.

As a simple example of the effect of nonequilibrium on the characteristics
of the flow, let us examine the case where an infinite surface located at z =
0 is deformed according to the travelling wave law

Z = Zoexp[ik(ct—x)] (k = 2w/}) (1.4)

Here: Lk = wave number; A = wavelength; c = velocity of wave propagation. /38

If we search for the potential ¢ in the form

® = @0(z)exp[tk(ct—x)]

then, solving the boundary problem (1.1)-(1.3), while taking into consideration
(1.4) for the potential ¢ and the pressure, we have

The dimensionless parameter T' = ToUck represents the relationship between
the characteristic relaxation time and the oscillatory motion. The unsteady
flow is in equilibrium as T > 0 and is constant as ' + »., For the pressure
gradient at the surface, we have

P (s, =85 - (1.5)

2. For a description of a disturbed nonequilibrium field of flow caused
by the unsteady motion of the surface of an infinite circular cylindrical shell
of radius R, located in an evenly distributed and equilibrium stream of gas

moving along the x axis of the shell with the velocity Ui inside the shell and

US in the outer region (the parameters of flow inside the shell and in the out-
er region will be designated by the superscripts i and e, respectively), we



will use the equations for the turbulent velocity potential in the cylindrical
coordinate system x, 6, and r (the x axis being directed along the axis of the
shell)

(2.1)

The boundary conditions on the moving wall shall be

. . 0 ow o
=% tUs'y; whenr=R—0, % =tV 3o when r =R + 0
. =
where r = w(x,8,t) is the motion equation of the surface of the shell. At in-

finity, the potential ¢© must satisfy the condition that the disturbances are

attenuated, ¢ - 0, and 39®/3r > 0, as r + ». If the potential %© describes a
wave process, these conditions must be replaced by the radiation conditions 9€

=L -1
0(r ®, i.e., the wave intensity must decrease by the relation r ° as the dis-

tance from the source lengthens. Besides this, the potential should describe
divergent waves if the shell radiates energy, and convergent waves if the shell
absorbs energy from the stream [3].

Let us suppose that the surface of the shell is deformed according to the
law w = WOexp[ik(ct—x)]cos nf. Then, by representing the potential in the form

of ¢ = @l (r)exp[ik(ct-x) Jcos nb,we obtain the following from equation (2.1):

¢ A,

The solution of equation (2.2) appears in the form of the following Bessel
functions:

©; = Cofs (v) + ¢

oY

Thus, the solution of the given problem is derived from the corresponding

solution for an inert gas [3] by interchanging the value of v2 = kz(Migz—l)

with the value of (2.2).

3. Let us introduce the dimensionless coordinates x and z, referred to /39
the quantity 1r = TwlUwx, which is proportional to the length of the relaxation,

and the dimensionless time t, referred to Tw. Let us suppose that the thin air-
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foil accomplishes small harmonic vibrations of frequency w in a supersonic even-
ly distributed and equilibrium stream of gas moving with the velocity U, along
the horizontal x akis. Let us represent the motion equations of the airfoil

and the turbulent velocity potential in the form

Z=lLh (D) exp(iIl), @ = Unly (s, ) oxp ( iy (3.1)

where ha(x) and (x,z) are the antisymmetric dimensionless components in the ex-

pansions of Z and ¢ into their symmetric and antisymmetric parts with respect

to the surface z = 0 (i.e., we are considering an antisymmetric problem here;
see, for example (4]). The dimensionless parameter T + wT« represents, as it
did above, the characteristic relaxation times and oscillatory motion, and de-
termines the degree of nonequilibrium of the unsteady flow. Substituting (3.1)
into (1.1)-(1.3), we obtain the following equations in the dimensionless coordi-
nates x and z, which describe the disturbed harmonic nonequilibrium flow field:

We shall subsequently use new independent variables for the solution

B
et
=

With the new variables, the expressions (3.2) and (3.3) take the form

(3.4)

(3.5)

On the strength of the supersonic character of the flow, the disturbances
will be equal to zero when x < 0. Then, using the Laplace transform

LUG W =F(s, n =7 mexp(—st)dk
. I 0



to equation (3.4), we obtain

—P-,;;—(zP+s)+21I‘—~—~s——l‘ —:‘[-;]F=—[2£l—'+2ir '5"_4'
+(a— )]a"o "’+[ 2(1+1F+3)5———21I‘ L, @r+=)*.
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Equating the right side of this equation to zero (the validity of this as-/40
sumption will be proved below), we have

3.7

Let us investigate the disturbed field flow near the first stagnation Mach
line, i.e., when § + 0. To find the values of the potential f and the velocity,

u = ¢x = fg and v = ¢z = Xf(fn—fg) when £ = 0, we have

;p,;fﬁ il <P 5,09), 60, s)-thle(O. m)]

Mlmkmm-g-u& o (3.8)

it 4

For values of £ » 0, the function wa(g) can be expanded in a series



we (§) =wa0) +wa’ OF + ... OF W, () =w, (0)s* +w,’ (o)}:t.*. R 1)

For high values of s, the functions § or 6—1 are represented in the form
of the following series:

(3.10)

Substituting (3.9) and (3.10) in (3.8), and approaching the limit, we obtain

#fguguo C u(, q)-_).,-l...(O)rn o=, O (3.11)

Equations (3.11) substantiate the assumption made during the derivation of
equation (3.6). It is evident from these equations that velocity disturbances
near § = 0 decrease exponentially as n - «,

Let us calculate the pressure coefficient on the surface of the airfoil.
From (3.5) for the trausformed pressure coefficient when n = 0, we have

(3.12)

Applying the convolution theorem twicé to the expression (3.13), we arrive
at the following formula for the value of the pressure coefficient on the air-
foil:

(3.14)



- . _ . g
@) =L [C@)] = oxpi— mb) o (wb) + (1 + iT) § exp (— mBy/{no)do
me="/sta@4+11+TF) na=(eQ —1—T)

Here J0 and IO are the Bessel function and the modified Bessel function of

the first kind of zero order, respectively. When w = 0 (the steady case),
Y(£) = c(&), and formula (3.14) coincides with the formula obtained in reference

[5] for the case of the steady supersonic nonequilibrium flow around a thin air-
foil.

Formula (3.14) can be simplified if we take into consideration that, in
the case examined, when in the disturbed flow there takes place only one non-
equilibrium process, the values of the stagnation and equilibrium velocities of
sound ag and a, are close to each other [6]. Thus, for example, in reference

[1], a suitable value for af/ae is considered to be 11/10, while in reference
[7] a value of 1.16 is chosen for af/ae. Assuming that AeZ/Af2(1+e), therefore,

where ¢ is a small quantity (we shall disregard the squares and higher powers
of €), we transform expression (3.12) into the form

(3.15)

Returnisg to axprassion (3.15), we obtaim tha following simplified formula
for the pressuwre on the atyfptls

]

OVt iTe(a [ M exp [—(1 + ) (E —p)]
,§[gp(p ©) -+ Tg(p — )] (9)do}{ I

)~ 1) exp[— iTM{My+1) (6 —p)] | T(M,+1)oxp [—iF M (M,—1)"(% —p)]
200, (M + 1 FiT)] ‘ +, M (M —1T—iT) }d"

AR (3.16)

ST T S— et
£) -'g;%—S"c @) exp [~ & ;._

~

2 .. . . .
which, with an accuracy to €, coincides with the formula obtained in reference
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[6] under analogous assumptions, but by another method, for the case of super-
sonic steady flow over a thin airfoil.

4. TFor small values of the parameter I', i.e., in the case of low-frequen-
cy harmonic vibrations of a thin airfoil, when the turbulent flow is almost at
equilibrium, the solution of equation (3.6) can be found in the form of an ex-
pansion in a series with respect to parameter T

o ) — h /
F=FATh PP .. (4.1)

Substituting (4.1) into (3.6), we obtain the following equations for the
zero and first approximations, respectively:

(4.2)

(4.3)

M %‘"'F) W"") (4.4)

Equation (4.2), together with the boundary conditions (4.4), describe the
solution of the steady state problem examined in reference [5]. For Fo(s,n) we
" have

o : &+ 2y
R L U R el o) @9

The solution of equation (4.3), which satisfies the boundary conditions
(4.4) and the condition of attenuation of disturbances at infinity, has the
form

(4.6)



For the transformed value of the dimensionless pressure gradient P on the
airfoil, which characterizes the local specific 1ift of the foil, taking into
account (3.5) and (4.1) we have

- ‘(Ev o et . - .
e === e Y T Ty

A
— . (4.7)
or substituting expressions (4.5) and (4.6) with n = 0 into (4.7)
CLAPT s — 4 1sW, (98 () — P (38 (96 () + TWee (9Q ) 4.8)
Converting (4.8), we obtain for the pressure gradient on the airfoil: 143
g , E
P=— - [ @)+ u @ cG—0)d0 —ir [ O EE—0)d0+
0 0 -
g
+ I wen (8) ¢ (R — 0) 0]
0 (4.9)

e = 60 —esp (58] 155+

I
+ iexp (—* : ! 0) Io(ffgio)de
0

VL AR st AR

L R R

As an example of the utilization of formula (4.9), let us examine the prob-
lem of the instability of longitudinal harmonic oscillations of an airfoil with
one degree of freedom. Harmonic longitudinal oscillations with respect to the
axis & = EO are described by displacement distribution h(E,t) = a(go-g)exp(ift).

Hence,

wav(g):: -—Wa [1 4 il' (§ — E)l = way + Twa, (4.10)

Substituting (4.10) into (4.9), we get

PG})= -% [(1 — iT%) ¢ (B) + iT Ay () — iT Ay () + iT 4, ()]
£ g .
4@ =\coram, 4 - \cO E®—0)an

0

(4.11)

The first two terms in the brackets describe quasi-stationary flow, while



the last two terms represent the compensation for the nonstationary character of
the flow. The dimensionless moment (positive, if it acts in the direction of an

increase in the angle of attack), which is dependent upon the obtained 1lift dis-
tribution P(£), is equal to

A— N l}' - ;’,,; N
Cx=\ P(}) (B —B)dt = a[Cu, + il (Cuy+ Cur, )]

H , (4.12)
where: A = 1/1r = the ratio of the length of the airfoil to the relaxation
1ength;.CM = the static moment; CM = the quasi-stationary longitudinal damp-

o

q
ing; and CM = a compensation related to the instability of the flow.

Inserting (4.11) into (4.12), we find

14
Cng =5y Badi (M) — 4 M), A5 (8) = {0c @) a0

o, \ A . (4.13)
== [ W) — bt )+ G — ) 4 @ at]
4 s R o . (4.14)
Cr,=5-|\ E—t) 42 (@)t -\ G —t) 4, ())&
. MQ, o) 4s i§(§ ) 4, () dE] 515)
For some values of the number Mf and of the abscissa EO’ the value of 144

the total moment CM + CM , which characterizes damping, may be negative. Thus,

&

the stability boundary of longitudinal harmonic oscillations of an airfoil with
one degree of freedom camn be found, if we assume that

My N ) Cu - . o=

16 4/\\\ ol Cx' + (.'y“ 0 (4.16)
= an N\
Fi"//, The figure illustrates curves (stability boundaries)
1] 12 obtained from equation (4.16) by numerical integration of
z the expressions (4.15) and (4.14) for A = < (the equili-
?] brium case) and for A = 1 and 0.4 (curves 1,2, and 3, re-
-04 J 92 04 0F

spectively). As is evident from an examination of the

curves, the presence of a nonequilibrium process increases
the region of instability of oscillations (the region inside the curves).

b

5. With larger values of ', i.e., in the cases of high-frequency harmonic
oscillations of a thin airfoil in a supersonic nonequilibrium stream of gas,
when the turbulent flow is close to stagnation, equation (3.2) can be solved by
the method of asymptotic expansion of the turbulent velocity potential with re-
spect to parameter I' [8]. In this method the boundary condition (3.3) is satis-
fied on the surface of the airfoil, and not when z = 0, i.e., we have the bound-
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ary condition

3¢/n = w when n =0 (5.1)

fhere: n = dimensionless normal to the surface of the airfoil; w = dimension-
less component of velocity normal to the surface of the airfoil), which allows
us to take into account the shape of the airfoil in the final formulas. The
turbulent velocity potential must also satisfy the radiation condition, in ac-
cordance with which the function ¢(x,z)exp(iTt) must describe a divergent wave
of finite intensity at infinity.

Let us represent the function ¢(x,z) in the form

4
4

9 (x,‘ 2) =D [T (2, 2) + T (2, 2) + - - léxp [ily (zf ) (5.2)

———

_ Substituting (5.2) into (3.2) and (5.1), and equating the coefficients of
[ of equal degrees to zero, we get the following equations for determining the
functions ¥(x,z) and xl(x,z):

MAps® — BMP? — 1 + 9.2 — 9 b + 3Mpp — M2 =0 (5.3)
I9? — 3N + 2 BM — 1) — 3Pl + 20, (e — D+

L [BME — e + Yer (px — 1) — A Wb + Mths —
» — AN P 2M A — MRl =0 (5.4)

(here and subsequently the indices represent differentiation with respect to the
corresponding coordinates). The equations for the determination of the function
xr(x,z), (r 2 2) are analogous to equation (5.4) with the right-hand side known.

The boundary conditions for the functions Y(x,z) and x,(x,z) will be

o
a,‘p . _"ll=—-' r-1 r ;
$(z,2)=0, Najp, = %y, , on r>2 when n = 0 (5.5)
From the condition (5.1) it also follows that m = 0.

The solution of equation (5.3) is equivalent to the solution of the [45
characteristic system of equations:

d d d L ey
§§==‘H$: §%==-H}v é%==lﬂ¥p4‘qﬂks If"‘k

E=—H+H), 3 =—GHo+H) gm=w
2H = (M — 1)p* — BM® — 1)p* + ¢* (1 — p) + 3My*p — M%), (5.6)

11



The parameter ¢ varies along the characteristic lines of the solution.

The differential equation (5.3) will be H = 0.

The boundary conditions for the characteristic system (5.6) will be (we
shall assume that on the surface of the airfoil ¢ = 0)

v=0, Z=2(%), 2=2,(1), P=ps(t), g = g (¥) when o = 0 (5.7)

where x = XO(T) and z = ZO(T) represent dimensionless parametric equations of

the surface of the airfoil (the parameter T increases as it travels over the
surface of the airfoil in a clockwise direction; the motion of the airfoil in
parametric form is given in the form X = xO(T)exp(iFt), Z = zq(T)exp(iFt).

. \

The quantities p,(t) and q,(t) can be determined from the equation
0 0

Hlm@i=o /

and the constancy conditions ¥(x,z) on the surface of the airfoil

s A

2 (1) + 90 (D2’ (¥) = 0

and for the flow which satisfies the radiation condition (i.e., describes di-
vergent waves) are equal to

—— _Msinf(y) _ MjcosO(r) Zo' (v) =1’ (v) cos @ (x)
P e . =1 M,smo@ 20’ (v) = I’ (v) sin O (x) -8

Here 6(t) is the slope of the airfoil contour; 1(t) is the dimensionless length
along the airfoil contour. Solving the characteristic system (5.6) with the
boundary conditions (5.7) and (5.8), we get

M;—sind(v) _ - o My
P=pna=q05=20+ i mem > ¥ T=Hsmem °
cos 0 (t)
z=120(7) + T—M,5in 0(0);° ‘ (5.9)

or, eliminating o,

2 = 2, (%) +cosO(t) W, x=ao(%)+ 1‘;”!_‘,‘%‘;‘_%*

My

Thus, the solution for function ¥(x,z) coincides with the corresponding
solution for ¥ in the case of an inert gas [2], where, however, the Mach number

12



is replaced by the stagnation Mach number M.

To determine function xl(x,z) let us cross from the coordinates x,z to

the characteristic coordinates 1,0 with the help of the transition formulas

dv _ Acosf(r) o A[M;—sin 6 (1))
9z~ I'(n ° oz (x)

-4 . s M;—sin® 6 7-
% = A[—Slaﬁli:}fff?el't —x:%i;nﬁ‘ <

Here R(1) = -1'(1)/6'(t) is the dimensionless radius of curvature of the /46
contour. With the new coordinates, equation (5.4) takes on the form

1}*‘

+ [1—-M,sm0(t) (5.11)
while for the boundary conditions, when ¢ = 0, we have from (5.5)

__ My .

= =M, smo(m =¥ (5.12)

Solving equation (5.11) with boundary condition (5.12), for the turbulent
velocity potential from (5.2) and (5.9) we obtain

T .
‘P= w (1 —M 6 :.l/'

X exp[— (z[‘-}- 1 ;(1—M,sm6) 5] . (5.13)

It is readily seen that the-turbulent velocity potential satisfies the ra-
diation condition as well.

Let us determine the pressure coefficient on the surface of the airfoil.
From (3.3) and (5.2) we have (when o = 0)

Cp _

2 2<lF(P+ ) [ i—_ﬂju%+ 1——13(,25111 +x")] (5.14)

From the boundary conditions (5.5) we have

A4 ) - — M,si
X o = 52(,{1’ h!‘—&—%"m”(m,cose——ﬁ,smmwben0=0 (5.15)

13



Substituting (5.15) into (5.14) and transforming into the coordinates T
and o, we get

iy 11— M;sin@ op -3
C"="2[1—M;sin0+rl My 0 +ow )] (5.16)

The values of the functions X1 and Bxl/ao when 0 = 0 can be derived from

(5.11) and (5.12). Then, for the amplitude of the pressure coefficient on the
surface of the section, taking into consideration the first two approximations
in the expansion (5.2), we obtain

0’32 i {.1 +‘;ir?1'i—’d‘-’ 7 e+ 2 -} (5.17)
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